245 research outputs found

    Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding

    Get PDF
    We present a deep learning framework for probabilistic pixel-wise semantic segmentation, which we term Bayesian SegNet. Semantic segmentation is an important tool for visual scene understanding and a meaningful measure of uncertainty is essential for decision making. Our contribution is a practical system which is able to predict pixel-wise class labels with a measure of model uncertainty. We achieve this by Monte Carlo sampling with dropout at test time to generate a posterior distribution of pixel class labels. In addition, we show that modelling uncertainty improves segmentation performance by 2-3% across a number of state of the art architectures such as SegNet, FCN and Dilation Network, with no additional parametrisation. We also observe a significant improvement in performance for smaller datasets where modelling uncertainty is more effective. We benchmark Bayesian SegNet on the indoor SUN Scene Understanding and outdoor CamVid driving scenes datasets.Toyota Corporatio

    A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images

    Full text link
    In recent years, with the development of aerospace technology, we use more and more images captured by satellites to obtain information. But a large number of useless raw images, limited data storage resource and poor transmission capability on satellites hinder our use of valuable images. Therefore, it is necessary to deploy an on-orbit semantic segmentation model to filter out useless images before data transmission. In this paper, we present a detailed comparison on the recent deep learning models. Considering the computing environment of satellites, we compare methods from accuracy, parameters and resource consumption on the same public dataset. And we also analyze the relation between them. Based on experimental results, we further propose a viable on-orbit semantic segmentation strategy. It will be deployed on the TianZhi-2 satellite which supports deep learning methods and will be lunched soon.Comment: 8 pages, 3 figures, ICNC-FSKD 201

    Knowledge Distillation for Multi-task Learning

    Get PDF
    Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation. Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics (e.g. cross-entropy, Euclidean loss), leading to the imbalance problem in multi-task learning. To address the imbalance problem, we propose a knowledge distillation based method in this work. We first learn a task-specific model for each task. We then learn the multi-task model for minimizing task-specific loss and for producing the same feature with task-specific models. As the task-specific network encodes different features, we introduce small task-specific adaptors to project multi-task features to the task-specific features. In this way, the adaptors align the task-specific feature and the multi-task feature, which enables a balanced parameter sharing across tasks. Extensive experimental results demonstrate that our method can optimize a multi-task learning model in a more balanced way and achieve better overall performance.Comment: We propose a knowledge distillation method for addressing the imbalance problem in multi-task learnin

    Can ground truth label propagation from video help semantic segmentation?

    Get PDF
    For state-of-the-art semantic segmentation task, training convolutional neural networks (CNNs) requires dense pixelwise ground truth (GT) labeling, which is expensive and involves extensive human effort. In this work, we study the possibility of using auxiliary ground truth, so-called \textit{pseudo ground truth} (PGT) to improve the performance. The PGT is obtained by propagating the labels of a GT frame to its subsequent frames in the video using a simple CRF-based, cue integration framework. Our main contribution is to demonstrate the use of noisy PGT along with GT to improve the performance of a CNN. We perform a systematic analysis to find the right kind of PGT that needs to be added along with the GT for training a CNN. In this regard, we explore three aspects of PGT which influence the learning of a CNN: i) the PGT labeling has to be of good quality; ii) the PGT images have to be different compared to the GT images; iii) the PGT has to be trusted differently than GT. We conclude that PGT which is diverse from GT images and has good quality of labeling can indeed help improve the performance of a CNN. Also, when PGT is multiple folds larger than GT, weighing down the trust on PGT helps in improving the accuracy. Finally, We show that using PGT along with GT, the performance of Fully Convolutional Network (FCN) on Camvid data is increased by 2.7%2.7\% on IoU accuracy. We believe such an approach can be used to train CNNs for semantic video segmentation where sequentially labeled image frames are needed. To this end, we provide recommendations for using PGT strategically for semantic segmentation and hence bypass the need for extensive human efforts in labeling.Comment: To appear at ECCV 2016 Workshop on Video Segmentatio

    Geometry meets semantics for semi-supervised monocular depth estimation

    Full text link
    Depth estimation from a single image represents a very exciting challenge in computer vision. While other image-based depth sensing techniques leverage on the geometry between different viewpoints (e.g., stereo or structure from motion), the lack of these cues within a single image renders ill-posed the monocular depth estimation task. For inference, state-of-the-art encoder-decoder architectures for monocular depth estimation rely on effective feature representations learned at training time. For unsupervised training of these models, geometry has been effectively exploited by suitable images warping losses computed from views acquired by a stereo rig or a moving camera. In this paper, we make a further step forward showing that learning semantic information from images enables to improve effectively monocular depth estimation as well. In particular, by leveraging on semantically labeled images together with unsupervised signals gained by geometry through an image warping loss, we propose a deep learning approach aimed at joint semantic segmentation and depth estimation. Our overall learning framework is semi-supervised, as we deploy groundtruth data only in the semantic domain. At training time, our network learns a common feature representation for both tasks and a novel cross-task loss function is proposed. The experimental findings show how, jointly tackling depth prediction and semantic segmentation, allows to improve depth estimation accuracy. In particular, on the KITTI dataset our network outperforms state-of-the-art methods for monocular depth estimation.Comment: 16 pages, Accepted to ACCV 201

    Classical and Quantum Chaos in a quantum dot in time-periodic magnetic fields

    Full text link
    We investigate the classical and quantum dynamics of an electron confined to a circular quantum dot in the presence of homogeneous Bdc+BacB_{dc}+B_{ac} magnetic fields. The classical motion shows a transition to chaotic behavior depending on the ratio ϵ=Bac/Bdc\epsilon=B_{ac}/B_{dc} of field magnitudes and the cyclotron frequency ω~c{\tilde\omega_c} in units of the drive frequency. We determine a phase boundary between regular and chaotic classical behavior in the ϵ\epsilon vs ω~c{\tilde\omega_c} plane. In the quantum regime we evaluate the quasi-energy spectrum of the time-evolution operator. We show that the nearest neighbor quasi-energy eigenvalues show a transition from level clustering to level repulsion as one moves from the regular to chaotic regime in the (ϵ,ω~c)(\epsilon,{\tilde\omega_c}) plane. The Δ3\Delta_3 statistic confirms this transition. In the chaotic regime, the eigenfunction statistics coincides with the Porter-Thomas prediction. Finally, we explicitly establish the phase space correspondence between the classical and quantum solutions via the Husimi phase space distributions of the model. Possible experimentally feasible conditions to see these effects are discussed.Comment: 26 pages and 17 PstScript figures, two large ones can be obtained from the Author

    Estimating Depth from RGB and Sparse Sensing

    Full text link
    We present a deep model that can accurately produce dense depth maps given an RGB image with known depth at a very sparse set of pixels. The model works simultaneously for both indoor/outdoor scenes and produces state-of-the-art dense depth maps at nearly real-time speeds on both the NYUv2 and KITTI datasets. We surpass the state-of-the-art for monocular depth estimation even with depth values for only 1 out of every ~10000 image pixels, and we outperform other sparse-to-dense depth methods at all sparsity levels. With depth values for 1/256 of the image pixels, we achieve a mean absolute error of less than 1% of actual depth on indoor scenes, comparable to the performance of consumer-grade depth sensor hardware. Our experiments demonstrate that it would indeed be possible to efficiently transform sparse depth measurements obtained using e.g. lower-power depth sensors or SLAM systems into high-quality dense depth maps.Comment: European Conference on Computer Vision (ECCV) 2018. Updated to camera-ready version with additional experiment

    Deep Depth From Focus

    Full text link
    Depth from focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end learning approach to this problem. One of the main challenges we face is the hunger for data of deep neural networks. In order to obtain a significant amount of focal stacks with corresponding groundtruth depth, we propose to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to digitally create focal stacks of varying sizes. Compared to existing benchmarks our dataset is 25 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that our proposed method `DDFFNet' achieves state-of-the-art performance in all scenes, reducing depth error by more than 75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201

    XmoNet:a Fully Convolutional Network for Cross-Modality MR Image Inference

    Get PDF
    Magnetic resonance imaging (MRI) can generate multimodal scans with complementary contrast information, capturing various anatomical or functional properties of organs of interest. But whilst the acquisition of multiple modalities is favourable in clinical and research settings, it is hindered by a range of practical factors that include cost and imaging artefacts. We propose XmoNet, a deep-learning architecture based on fully convolutional networks (FCNs) that enables cross-modality MR image inference. This multiple branch architecture operates on various levels of image spatial resolutions, encoding rich feature hierarchies suited for this image generation task. We illustrate the utility of XmoNet in learning the mapping between heterogeneous T1- and T2-weighted MRI scans for accurate and realistic image synthesis in a preliminary analysis. Our findings support scaling the work to include larger samples and additional modalities

    Joint Learning of Intrinsic Images and Semantic Segmentation

    Get PDF
    Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinsegComment: ECCV 201
    • …
    corecore